Alleviating Distortion in Image Generation via Multi-Resolution Diffusion Models and Time-Dependent Layer Normalization

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper

Authors

Qihao Liu, Zhanpeng Zeng, Ju He, Qihang Yu, Xiaohui Shen, Liang-Chieh Chen

Abstract

This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization.Diffusion models have gained prominence for their effectiveness in high-fidelity image generation.While conventional approaches rely on convolutional U-Net architectures, recent Transformer-based designs have demonstrated superior performance and scalability.However, Transformer architectures, which tokenize input data (via "patchification"), face a trade-off between visual fidelity and computational complexity due to the quadratic nature of self-attention operations concerning token length.While larger patch sizes enable attention computation efficiency, they struggle to capture fine-grained visual details, leading to image distortions.To address this challenge, we propose augmenting the **Di**ffusion model with the **M**ulti-**R**esolution network (DiMR), a framework that refines features across multiple resolutions, progressively enhancing detail from low to high resolution.Additionally, we introduce Time-Dependent Layer Normalization (TD-LN), a parameter-efficient approach that incorporates time-dependent parameters into layer normalization to inject time information and achieve superior performance.Our method's efficacy is demonstrated on the class-conditional ImageNet generation benchmark, where DiMR-XL variants surpass previous diffusion models, achieving FID scores of 1.70 on ImageNet $256 \times 256$ and 2.89 on ImageNet $512 \times 512$. Our best variant, DiMR-G, further establishes a state-of-the-art 1.63 FID on ImageNet $256 \times 256$.