Transformers on Markov data: Constant depth suffices

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Nived Rajaraman, Marco Bondaschi, Ashok Vardhan Makkuva, Kannan Ramchandran, Michael Gastpar

Abstract

Attention-based transformers have been remarkably successful at modeling generative processes across various domains and modalities. In this paper, we study the behavior of transformers on data drawn from $k^{\text{th}}$-order Markov processes, where the conditional distribution of the next symbol in a sequence depends on the previous $k$ symbols observed. We observe a surprising phenomenon empirically which contradicts previous findings: when trained for sufficiently long, a transformer with a fixed depth and $1$ head per layer is able to achieve low test loss on sequences drawn from $k^{\text{th}}$-order Markov sources, even as $k$ grows. Furthermore, this low test loss is achieved by the transformer’s ability to represent and learn the in-context conditional empirical distribution. On the theoretical side, we prove that a transformer with $O(\log_2(k))$ layers can represent the in-context conditional empirical distribution by composing induction heads to track the previous $k$ symbols in the sequence. Surprisingly, with the addition of layer normalization, we show that a transformer with a constant number of layers can represent the in-context conditional empirical distribution, concurring with our empirical observations. This result provides more insight into the benefit of soft-attention and non-linearities in the transformer architecture.