Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track
Yassine Laguel, Yasa Syed, Necdet Serhat Aybat, Mert Gurbuzbalaban
Stochastic smooth nonconvex minimax problems are prevalent in machine learning, e.g., GAN training, fair classification, and distributionally robust learning. Stochastic gradient descent ascent (GDA)-type methods are popular in practice due to their simplicity and single-loop nature. However, there is a significant gap between the theory and practice regarding high-probability complexity guarantees for these methods on stochastic nonconvex minimax problems. Existing high-probability bounds for GDA-type single-loop methods only apply to convex/concave minimax problems and to particular non-monotone variational inequality problems under some restrictive assumptions. In this work, we address this gap by providing the first high-probability complexity guarantees for nonconvex/PL minimax problems corresponding to a smooth function that satisfies the PL-condition in the dual variable. Specifically, we show that when the stochastic gradients are light-tailed, the smoothed alternating GDA method can compute an $\varepsilon$-stationary point within $\mathcal{O}(\frac{\ell \kappa^2 \delta^2}{\varepsilon^4} + \frac{\kappa}{\varepsilon^2}(\ell+\delta^2\log({1}/{\bar{q}})))$ stochastic gradient calls with probability at least $1-\bar{q}$ for any $\bar{q}\in(0,1)$, where $\mu$ is the PL constant, $\ell$ is the Lipschitz constant of the gradient, $\kappa=\ell/\mu$ is the condition number, and $\delta^2$ denotes a bound on the variance of stochastic gradients. We also present numerical results on a nonconvex/PL problem with synthetic data and on distributionally robust optimization problems with real data, illustrating our theoretical findings.