Iterative Methods via Locally Evolving Set Process

Part of Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track

Bibtex Paper Supplemental

Authors

Baojian Zhou, Yifan Sun, Reza Babanezhad Harikandeh, Xingzhi Guo, Deqing Yang, Yanghua Xiao

Abstract

Given the damping factor $\alpha$ and precision tolerance $\epsilon$, \citet{andersen2006local} introduced Approximate Personalized PageRank (APPR), the \textit{de facto local method} for approximating the PPR vector, with runtime bounded by $\Theta(1/(\alpha\epsilon))$ independent of the graph size. Recently, Fountoulakis \& Yang asked whether faster local algorithms could be developed using $\tilde{\mathcal{O}}(1/(\sqrt{\alpha}\epsilon))$ operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of *whether standard iterative solvers can be effectively localized*. We propose to use the *locally evolving set process*, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized. Let $\overline{\operatorname{vol}}{ (\mathcal S_t)}$ and $\overline{\gamma_t}$ be the running average of volume and the residual ratio of active nodes $\textstyle \mathcal{S_t}$ during the process. We show $\overline{\operatorname{vol}}{ (\mathcal S_t)}/\overline{\gamma_t} \leq 1/\epsilon$ and prove APPR admits a new runtime bound $\tilde{\mathcal{O}}(\overline{\operatorname{vol}}(\mathcal S_t)/(\alpha\overline{\gamma_t}))$ mirroring the actual performance. Furthermore, when the geometric mean of residual reduction is $\Theta(\sqrt{\alpha})$, then there exists $c \in (0,2)$ such that the local Chebyshev method has runtime $\tilde{\mathcal{O}}(\overline{\operatorname{vol}}(\mathcal{S_t})/(\sqrt{\alpha}(2-c)))$ without the monotonicity assumption. Numerical results confirm the efficiency of this novel framework and show up to a hundredfold speedup over corresponding standard solvers on real-world graphs.